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Finally we discuss the relation between the elec- 
trogyration and dielectric properties of the alums by 
considering the rule of Miller (1964), who defined a 
quantity A, applicable to non-linear optical properties 
and valid for all materials. In the case of the electro- 
gyration of alums this magnitude is defined by (Miller, 
1973) 

Ag2a = S,z3/[4nZ2(co)Z(0)] • 

The susceptibility Z(co) at frequency co is related to 
the index of refraction n by the relation 

Z(co) = (n2-  1)/4n, 

and the value of Z(0) is equal to (e-1) /4n,  where e 
is the dielectric constant. The reduced constants A~23 
are listed in Table 2. 

Contrary to the second-harmonic generation and 
the linear electro-optical effect of many materials, 
where A is nearly a constant, Miller's rule does not 
explain the differences in the electrogyration proper- 
ties of the alums. 
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To refine the orientation and location of a rigid group of atoms in a crystal it is not necessary to store 
the atom coordinates relative to a localized axial system. All atoms in the asymmetric unit are defined 
relative to a single orthonormal axial system. A local axial system is created by taking an atom in the 
rigid group as origin and defining the local axes as parallel to these orthonormal axes. The evaluation 
of the required derivatives is then very easy. The replacement of approximate atom positions by idealized 
atom positions is described. 

Introduction 

Rigid group refinement has previously been performed 
in a somewhat awkward manner (Scheringer, 1963; 
La Placa & Ibers, 1965; Doedens, 1970). The awkward- 
ness occurs because the orientation of the rigid group 
of atoms is described by rotations about fixed axial 
directions whereas the atoms are described by fixed 
coordinates in a refineable local axial system. 

There are two ways of simplifying the evaluation 
of an incremental change in orientation and location 
of a rigid group of atoms. 

(i) If fixed local coordinates are used, rotate the 
rigid group about the initial directions of the refineable 
axial system. 

(ii) If fixed rotation axial directions are used, rede- 
fine the local coordinates each cycle so that the initial 
axial directions of the local axial system are parallel 
to the rotation axes. 

* Research performed at Oak Ridge National  Laboratory  
and sponsored by the Energy Research and Development  
Adminis t ra t ion  under  contract  with the Union  Carbide 
Corporat ion.  

The first method requires the redefinition of the 
scattering vector relative to the local coordinate system 
for easy implementation (Rae, 1975). It has an advan- 
tage if the group is not truly rigid (symmetry con- 
straints and equal object constrants). It also has an 
advantage for a linear rigid group in that rotation 
about the linear direction is easily omitted from the 
refinement. However, it does require the storage of 
both the local coordinates and the local axial system. 
For a strictly rigid, non-linear group the second method 
is more advantageous and is described in detail. 

Theory 

We can describe the position vector of the nth atom 
in the rigid group relative to standard orthonormal 
reference axes At as 

X~,A~= ~ X~A~+ ~ V~j(Y~- r~)Aj (1) 
i i ii 

where the X~, are orthonormal crystal coordinates of 
the nth atom in the group and the X~ are orthonormal 
crystal coordinates of the local origin after refinement. 
The Y~ and Y~ are the corresponding values of these 
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coordinates before refinement. For simplicity the first 
atom in the group is chosen as origin. The matrix 
V is chosen as the product of three matrices 

( 3 3i) ( (!00) 
V =  -5'3 C3 1 C~ S~ 

0 0 \Sz  0 C21 , - S ~  C~ 
(2) 

where C~=cos 9"i, S t=s in  9"~ and 9"t is the angle of 
rotation about the ith local axis direction which is 
parallel to A,. Initially the 9"~ are zero and V is the 
unit matrix. 

Derivatives for least squares follow naturally. Thus 

(0Flc~9"x)0 = ~. @FlaXln)o@Xin/09"l)O 
i,n 

= ~ [(OF/OX~)o(Y]-  Y3o)- (OF/OX~)o(Y]-  yo2)] 
n 

(3) 

(OF/OX~o)o = ~ (OF/aX~)o . (4) 
n 

Derivatives with respect to 9"2 and 9'3 are obtained 
from (3) by cyclic permutation of indices. 

The problem is non-linear since the values of the 
derivatives depend on the values of 9", and X~. The 
subscript 0 outside the brackets in (3) and (4) implies 
evaluation from the initial parameter values (i.e. C~ = 
1, S ,=0 ,  i =  1,3). The use of orthonormal coordinates 
rathe1 than fractional coordinates to evaluate (OF/OX~,)o 
is discussed by Rae (1975). 

A single refinement cycle evaluates the matrix V 
and the local origin X0 and then replaces the coordinates 
ys by the coordinates X, ~ with the transformation 
(1). For the next cycle V is again initially the unit 
matrix. 

If linearity is assumed the derivatives evaluated in 
(3) imply a non-unitary matrix 

- -  9"2 

-- 9'3 1 1 
9"2 - 9"x 

for V and take no account of the multiplication se- 
quence given in (2). Because of this non-linearity it 
is desirable to damp the change in orientation that 
results by evaluating the 9", and then the matrix V 
obtained from (2). A procedure with desirable charac- 
teristics follows. Evaluate the 9", and create the matrix 

U = - $3 1 1 • 
$2 - S I  

A unitary approximation to V is then obtained by 
replacing column vectors 

(1) 1 (!2) 
Ul = ~ $ 3  , 112 = , U3 ~ 1 

- s , /  

by vl, vz, v3 where vz = m / N .  v3 = u~ × v2/~,  vl = v2 × v3 
and N~ and Nz are normalization constants. 

The replacement of  approximate atoms 
by idealized atoms 

The recommended procedure is essentially that of 
Nyburg (1974) except that full-matrix rather than 
diagonal-matrix least-squares equations are solved. The 
transformation between two groups of atoms having 
a known 1 to 1 correspondence is best evaluated by 
minimizing ~w,,A, z where A, is the distance between 

n 

the nth corresponding atoms when one group is super- 
imposed on the other and wg -1 is the variance of this 
distance. 

The best least-squares solution causes the weighted 
centroids to coincide, but does not necessarily cause 
the directions of the principal axes of inertia to coincide 
unless one of the groups is linear. 

The position of the nth atom relative to the coinci- 
dent centroids is given as ~(Y,~-Yo~)B~ for the re- 

i 
placement atom described relative to local orthonormal 
axes B1 and as ~(X~-Xo~)A~ for the atom being re- 

i 
placed described relative to orthonormal crystal axes 
A t .  

We say 

i i __ k ( X , , -  X o ) A ~ -  ~ Vij Wjk(X,, - Xko)Bi 
i Ok 

and minimize ~ 2 ~w,,(A,,) , where the 
in 

r, , -  to) 
j k  

are components of the separation of the nth pair of 
corresponding atoms in the local axial system Bi. The 
matrix V is of the form given in (2) and is refineable 
with the initial assumption that V is the unit matrix. 
The matrix W is not refined and is an initial estimate 
of the transformation matrix. The refinement is non- 
linear, but converges very rapidly with the approxima- 
tion to V given earlier. The equations solved are 

~, M u A  9"~ = N~, i = 1,2, 3 (5) 
J 

where 

Mll  = ~, w,,[(X2, - X,°) z + (X3, - X°,) z] 
n 

M , 2  = - - X,° , )  ( X ,  - X ,° , )  
n 

and 

N, = 
n 

where 

= Wik(X,, - Xo) - (Y~ - Yo) .  
k 

The other elements in (5) are obtained by cyclic 
permutation. (5) are ill-conditioned only if the inertia 
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tensor M~j has a zero eigenvalue, i.e. if the group of 
atoms being replaced is linear. 

It is, of course, necessary to make a good approxima- 
tion for the matrix W. For the method described in 
this paper a meaningful approximation is only possible 
if the chiralities of the two groups agree. For a linear 
group the solution is complete if the direction of the 
principal axis of inertia of minimum value is found 
for the atoms being replaced. With the correct choice 
of sign this corresponds to the best estimate of the 
linear direction. For non-linear groups, the alignment 
of principal inertial axes is not to be recommended 
as the choice of sign question remains and accuracy 
is very doubtful whenever two principal inertial axes 
are almost equal. The matrix W transforms three 
uniquely defined orthonormal directions in one axial 
system into equivalently defined directions in the other 
axial system. A sensible choice of three non-collinear 
atoms is used. Vector ut between atoms 1 and 2 and 
vector u2 between atoms 1 and 3 define orthonormal 
vectors v2 = u2 /N1,  v3 = Ill × v2 /N2  and vl = v2 x v3,  where 

N1 and N2 are normalization constants. We say that 

vi = Z U~A~= ~ U~kBR , 
j k 

so that 

~Vjk ~ A B = UuUIk. 
i 

U~ are direction cosines in the orthonormal axial 
system Aj defined by three of the atoms being replaced. 
U~k are direction cosines in the axial system Bk de- 
fined by the corresponding three replacement atoms. 
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A general method is developed for calculating the temperature diffuse intensity for cubic powder 
patterns. The method is applied to the pattern of an f.c.c, crystal containing 10 lz atoms. The effect 
of temperature vibration is a spreading out at the base of the peak. In terms of the integral breadth, 
there is an increase which may be of the order of several percent. But the main part of the peak is 
essentially unaltered, and the increase does not relate to what is generally measured as a breadth. 
The usual observation is better represented by the breadth at half maximum intensity, and for this 
quantity there is an increase of less than 0.07% for 2M= 1.0 and less than 0.17% for 2M=2.0. It is 
concluded that a real temperature broadening of powder pattern peaks will always be too small to 
be of importance, or to be experimentally observable. 

1. Introduction 

For crystals containing only one kind of atom, the 
early Debye approximation, involving independent 
vibration of the atoms, predicted a reduction in the in- 
tensity of the Bragg reflections by the factor 
exp ( - 2 M ) ,  and the appearance of a monotonic dif- 
fuse intensity equal to leNf2[1-exp ( - 2 M ) ] .  There 
was no broadening of a powder pattern reflection, only 
a reduction in height. 

A better approximation represents the atomic vibra- 
tions in terms of a system of elastic waves. The first- 
order temperature diffuse intensity (TDS) for an f.c.c. 
powder pattern has been evaluated on the basis of the 
elastic wave model (Warren, 1953) and the contribu- 

tion by second-order TDS has been given by Paskin 
(1958). It is found that the TDS averages closely to 
the old independent vibration result, but at the posi- 
tion of each of the Bragg reflections, the TDS rises 
sharply, and the Bragg reflections are superimposed 
on these peaks in the diffuse intensity. The elastic wave 
treatment predicts that the temperature vibration of 
the atoms should produce a broadening in the peaks 
occurring at the Bragg positions. 

However the previous treatment is not satisfactory 
for predicting the magnitude of the broadening. At the 
position of each of the Bragg reflections, the TDS rises 
to infinite values. This unrealistic result came from an 
integration in the Brillouin zone over the elastic wave 
vectors g, including all wave vectors down to g = 0 .  
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